Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338897

RESUMO

Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.


Assuntos
Solanum nigrum , Tobamovirus , Humanos , Virulência , Solanum nigrum/genética , DNA Complementar/genética , Filogenia , Tobamovirus/genética , Doenças das Plantas
3.
Viruses ; 15(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896904

RESUMO

Rice black-streaked dwarf virus (RBSDV) infects rice and maize, and seriously affects rice yields in main rice-producing areas. It can be transmitted via small brown planthopper (SBPH: Laodelphax striatellus Fallén). To more rapidly, sensitively, and highly throughput diagnose RBSDV in the wild condition, we first purified the recombinant His-CPRBSDV protein, and prepared the polyclonal antibodies against the His-CPRBSDV protein (PAb-CPRBSDV). Based on the PAb-CPRBSDV, we developed a series of serological detections, such as Western blot, an enzyme-linked immunosorbent assay (ELISA), and a dot immunoblotting assay (DIBA). Furthermore, we developed a serological-based reverse-transcription loop-mediated isothermal amplification assay (S-RT-LAMP) that could accurately detect RBSDV in the wild. Briefly, the viral genomic dsRNA together with viral CP were precipitated by co-immunoprecipitation using the PAb-CPRBSDV, then the binding RNAs were crudely isolated and used for RT-LAMP diagnosis. Using the prepared PAb-CPRBSDV, four serology-based detection methods were established to specifically detect RBSDV-infected rice plants or SBPHs in the wild. The method of S-RT-LAMP has also been developed to specifically, high-throughput, and likely detect RBSDV in rice seedlings and SBPHs simultaneously. The antiserum prepared here laid the foundation for the rapid and efficient detection of RBSDV-infected field samples, which will benefit for determination of the virulence rate of the transmission vector SBPH and outbreak and epidemic prediction of RBSDV in a rice production area.


Assuntos
Hemípteros , Oryza , Vírus de Plantas , Reoviridae , Animais , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Diagnóstico Molecular , Vírus de Plantas/genética , Anticorpos , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA